
 

 

 

Abstract—This paper focuses on the problem of stabilizing 

fractional order time delay systems by fractional first order 

controllers. A solution is proposed to find the set of all stability 

regions in the controller’s parameter space. The D-decomposition 

method is employed to find the real root boundary and complex 

root boundaries which are used to identify the stability regions. 

Illustrative examples are given to show the effectiveness of the 

proposed approach, and it is remarked that the stability region 

obtained for the fractional order controller is larger than the 

non-fractional controller. 

 

Keywords— Fractional order control, first order controller, 

stability, time delay systems.  

I. INTRODUCTION 

ONTROL of fractional order systems has gained the 

attention of many researchers in the last decade. In 

fact, many real-life processes in electrochemistry, 

material science and biology are better represented by 

fractional order systems. These systems are 

characterized by differential equations of arbitrary order, 

not necessarily integer order. Fractional calculus is a 

solution to better represent these systems by 

incorporating non-integer order slopes in their frequency 

responses and hence dealing with poles and zeros of 

fractional power. See [1] and the references therein for 

examples of fractional order systems.  

 

 In this paper, we study stability of fractional order delay 

systems. Actually, many industrial applications 

inherently contain time delay which is generated by 

physical phenomenon such as information transport, 

time lags between interconnected systems and many 

other factors. Combining fractional order and time delay 

makes stability analysis and controller design more 

 
 

difficult and challenging [2]. In fact, time delay systems 

possess an infinite number of roots which makes 

straightforward stability check almost impossible.  

 

Determining all the stabilizing controllers for a given 

linear time invariant systems is an important step in 

designing optimal controllers, as they represent the 

search space for satisfying further design criteria. The 

problem becomes more difficult by fixing the order and 

structure of the controllers used [3]-[4]. On the other 

hand, most controllers used in industry are fixed 

structure, low order controllers being first order, 

proportional (P), proportional derivative (PD), 

proportional integral (PI), or proportional integral 

derivative (PID) controllers. Obtaining the set of all 

stabilizing controllers with fixed order and structure is 

an important task and has many advantages. For all the 

above reasons, there was an extensive literature on 

stabilizing time delay systems by low order controllers 

[5]-[11] such as first order controllers in [7], PI 

controllers in [8], and PID controllers [9].  

 

In the above-mentioned papers, the stabilizing problem 

is solved for systems which are described by integer 

order differential equations and few studies dealt with 

fractional controllers applied to fractional order systems 

with time delay [10]. It is known that using fractional 

order controllers can improve the overall performance of 

the closed loop system of time delay systems and can 

also improve robustness [2]. In fact, fractional order 

controllers outperform integer order controllers in many 

situations [2]. Many papers in the literature dealt with 

tuning of fractional order PID controllers, and little 

attention was paid to studying fractional order lead lag 

controllers, although first order lead lag controllers are 

also widely used in industry. In this paper, we determine 
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the set of all stabilizing fractional first order controllers 

for fractional order time delay systems.  

 

The paper is structured as follows. The second section 

gives some preliminary results. Section III describes our 

approach for determining stabilizing fractional first order 

controllers for fractional order time delay systems. In 

section IV, illustrative examples are given. Finally, the 

last section presents some concluding remarks.  

II. PRELIMINARIES 

 

In this paper, the objective is to determine all the 

stabilizing parameters (𝛼1, 𝛼2, 𝛼3) of a fractional first 

order controller applied to the feedback system shown in 

Fig. 1. 
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Fig. 1 Fractional first order control structure 

The fractional first order controller can be written as 

𝐶(𝑠) =
𝛼2𝑠𝜆2+𝛼3

𝑠𝜆1+𝛼1
,                                    (1) 

where  𝜆1 and  𝜆2 are the fractional orders. The 

fractional first order controller can be considered as a 

generalization of the conventional first order controller 

as it involves a pole and a zero with non-integer slopes 

in their frequency responses. Theoretically,  𝜆1 and  𝜆2 

can take any positive, real value. However, like the 

fractional PID controller case, the interval of the 

fractional orders is limited to (0,2). For the case  𝜆1 =
 𝜆2 = 1, we obtain the classical first order 

controller. 𝛼1 = 0 and 𝜆1 =  𝜆2 give a fractional PI 

controller, and taking 𝜆1 =  0 results in a fractional PD 

controller. 

 

  The system to be stabilized is a fractional order time 

delay system with a transfer function given by 

𝐺(𝑠) =
𝑒−𝐿𝑠

𝑄(𝑠)
,                                    (2) 

where 𝐿 > 0 is the delay, and 𝑄(𝑠) is a fractional 

polynomial where the powers of s can take any positive 

real value, not necessarily an integer. The denominator 

𝑄(𝑠) can be written as  

𝑄(𝑠) = 𝑏𝑛𝑠𝛽𝑛 + 𝑏𝑛−1𝑠𝛽𝑛−1 + ⋯ + 𝑏1𝑠𝛽1 + 𝑏0𝑠𝛽0 , 

   = ∑ 𝑏𝑖𝑠𝛽𝑖𝑛
𝑖=0  ,                                                (3) 

where 𝛽𝑛 > 𝛽𝑛−1 > ⋯ > 𝛽1 > 𝛽0 ≥ 0 are arbitrary real 

positive numbers.  

The resulting closed-loop characteristic equation is  

𝛥∗(𝑠, 𝛼1, 𝛼2, 𝛼3) = (𝑠𝜆1 + 𝛼1)𝑄(𝑠) + (𝛼2𝑠𝜆2 + 𝛼3)𝑒−𝐿𝑠.    (4) 

Using the expression of  𝑄(𝑠)  given in (3), we get the 

following fractional order characteristic equation  

𝛥∗(𝑠, 𝛼1, 𝛼2, 𝛼3) = (𝑠𝜆1 + 𝛼1)(𝑏𝑛𝑠𝛽𝑛 + 𝑏𝑛−1𝑠𝛽𝑛−1 + ⋯ + 

             𝑏1𝑠𝛽1 + 𝑏0𝑠𝛽0) + (𝛼2𝑠𝜆2 + 𝛼3)𝑒−𝐿𝑠.    (5) 

The objective is to find all values of (𝛼1, 𝛼2, 𝛼3) for 

which the quasi-polynomial 𝛥∗(𝑠, 𝛼1, 𝛼2, 𝛼3) has all its  

roots in the open left-half of the s-plane. We are 

searching a stability domain 𝑆, in the space of the 

controller’s parameters (𝛼1, 𝛼2, 𝛼3), by employing the 

D-decomposition method [12]-[14]. The principle of this 

method is based on the fact that roots of the quasi-

polynomial (5) change continuously as the coefficients 

of the quasi-polynomial are changed continuously. As a 

result, a stable quasi-polynomial becomes unstable if and 

only if at least one of its roots moves from the left half 

plane to the right half plane by crossing the imaginary 

axis. Using this fact, the D-decomposition method 

partitions the controller’s parameter’s space into regions 

such that each region has a fixed number of roots in the 

left half complex plane. Therefore, stability can be 

inferred by selecting a point inside the region and using 

any stability classical checking methods, such as Nyquist 

criterion. 

III. DETERMINING STABILITY REGIONS OF FRACTIONAL 

FIRST ORDER CONTROLLERS 

 

In this section, the stabilizing regions in the parameter 

space of the controller are obtained by applying the D-

decomposition method. The boundaries of the stability 

domains are determined by replacing 𝑠 by 𝑗𝜔 in the 

fractional order characteristic equation (5), and equating 

the real and imaginary parts to zero, and sweeping over 

values of  𝜔 ≥ 0. Real root boundary and complex root 

boundaries are calculated. Note that the term 𝑒𝐿𝑠 has no 

finite roots, consequently the quasi-polynomial ∆∗(𝑠) 

and 𝛥(𝑠) = ∆∗(𝑠)𝑒𝐿𝑠   have the same roots, therefore 

stability of 𝛥(𝑠) is equivalent to stability of ∆∗(𝑠). In the 

sequel, the quasi-polynomial 𝛥(𝑠) will be used to infer 

stability of the closed-loop system of Fig. 1, where 𝛥(𝑠) 

is given by 

  𝛥(𝑠) = (𝑠𝜆1 + 𝛼1)𝑄(𝑠)𝑒𝐿𝑠 + (𝛼2𝑠𝜆2 + 𝛼3) 

     = (𝑠𝜆1 + 𝛼1)(∑ 𝑏𝑖𝑠
𝛽𝑖)𝑒𝐿𝑠 +𝑛

𝑖=0 (𝛼2𝑠𝜆2 + 𝛼3).        (6) 

Assuming that 𝑠𝛽0 = 1 in (1), the real root boundary is 

found by setting 𝜔 = 0 in ∆(𝑗𝜔, 𝛼1, 𝛼2, 𝛼3), which 

results in an equation of straight line expressed as 

𝛼3 = −𝑏0𝛼1.                      (7) 
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The complex root boundaries can be determined by 

substituting 𝑠 = 𝑗𝜔 in (6), equating the real an 

imaginary parts of 𝛥(𝑗𝜔) to zero and solving for 𝛼2 and 

𝛼3 in terms of 𝛼1. 𝛥(𝑠) can be written as 

Δ(𝑠) = 𝑄0(𝑠) + 𝛼1𝑄1(𝑠) + 𝛼2𝑄2(𝑠) + 𝛼3,              (8) 

where 

𝑄0(𝑠) = (𝑏𝑛𝑠𝛽𝑛+𝜆1 + ⋯ + 𝑏1𝑠𝛽1+𝜆1 + 𝑏0𝑠𝛽0+𝜆1)𝑒𝐿𝑠,          (9) 

𝑄1(𝑠) = (𝑏𝑛𝑠𝛽𝑛 + 𝑏𝑛−1𝑠𝛽𝑛−1 + ⋯ + 𝑏1𝑠𝛽1 + 𝑏0𝑠𝛽0)𝑒𝐿𝑠,  (10) 

𝑄2(𝑠) = 𝑠𝜆2 .                   (11) 

Replacing 𝑠 by 𝑗𝜔, we obtain 

𝛥(𝑗𝜔) = 𝑄0(𝑗𝜔) + 𝛼1𝑄1(𝑗𝜔) + 𝛼2 𝑄1(𝑗𝜔) + 𝛼3.      (12) 

Using (12), we have to deal with fractional order powers 

of 𝑗, which can be written as  

𝑗𝛽𝑖+𝜆1 = 𝑐𝑜𝑠( (𝛽𝑖 + 𝜆1)
𝜋

2
) + 𝑗 𝑠𝑖𝑛( (𝛽𝑖 + 𝜆1)

𝜋

2
), 

     = 𝑥𝑖 + 𝑗𝑦𝑖 ,                                               (13) 

𝑗𝛽𝑖 = 𝑐𝑜𝑠( 𝛽𝑖

𝜋

2
) + 𝑗 𝑠𝑖𝑛( 𝛽𝑖

𝜋

2
), 

  = 𝑧𝑖 + 𝑗𝑡𝑖 ,                                                  (14) 

for 𝑖 = 1, … , 𝑛. Hence, 𝛥(𝑗𝜔) can be expressed as 

𝛥(𝑗𝜔) = ∑ 𝑏𝑖𝜔
𝛽𝑖+𝜆1(𝑥𝑖 + 𝑗𝑦𝑖)(𝑐𝑜𝑠( 𝐿𝑤) + 𝑗 𝑠𝑖𝑛( 𝐿𝑤)

𝑛

𝑖=0

) 

    +𝛼1 ∑ 𝑏𝑖𝜔
𝛽𝑖(𝑧𝑖 + 𝑗𝑡𝑖)

𝑛

𝑖=0

(𝑐𝑜𝑠( 𝐿𝑤) + 𝑗 𝑠𝑖𝑛( 𝐿𝑤)) 

         +(𝛼2𝜔𝜆2(𝑐𝑜𝑠(𝜆2
𝜋

2
) + 𝑗 𝑠𝑖𝑛( 𝜆2

𝜋

2
)) + 𝛼3).     (15) 

Separating the above equation into real and imaginary 

parts, we obtain 

𝛥(𝑗𝜔) = (𝑄0𝑟(𝑗𝜔) + 𝑗𝑄0𝑗(𝑗𝜔)) + 𝛼1(𝑄1𝑟(𝑗𝜔) + 𝑗𝑄1𝑗(𝑗𝜔)) 

       +𝛼2 (𝑄2𝑟(𝑗𝜔) + 𝑗𝑄2𝑗(𝑗𝜔)) + 𝛼3.                      (16) 

Let ℜ(𝜔, 𝛼1, 𝛼2, 𝛼3) and ℑ(𝜔, 𝛼1, 𝛼2) denote the real 

and imaginary parts of 𝛥(𝑗𝜔), respectively. Then, (16) 

can be written as  

𝛥(𝑗𝜔) = ℑ(𝜔, 𝛼1, 𝛼2, 𝛼3) + 𝑗ℑ(𝜔, 𝛼1, 𝛼2),                         
(17) 

where  

ℑ(𝜔, 𝛼1, 𝛼2, 𝛼3) = 𝑄0𝑟(𝑗𝜔) + 𝛼1𝑄1𝑟(𝑗𝜔) + 𝛼2 𝑄2𝑟(𝑗𝜔) + 𝛼3, 
and 

ℑ(𝜔, 𝛼1, 𝛼2) = 𝑄0𝑗(𝑗𝜔) + 𝛼1𝑄1𝑗(𝑗𝜔) + 𝛼2 𝑄2𝑗(𝑗𝜔). 

Equating the real and imaginary parts of (17) to zero, we 

get 

𝑄0𝑟(𝑗𝜔) + 𝛼1𝑄1𝑟(𝑗𝜔) + 𝛼2 𝑄2𝑟(𝑗𝜔) + 𝛼3 = 0,                 (18) 
𝑄0𝑗(𝑗𝜔) + 𝛼1𝑄1𝑗(𝑗𝜔) + 𝛼2 𝑄2𝑗(𝑗𝜔) = 0,                          (19) 

Where 

𝑄0𝑟(𝜔) = ∑ 𝑏𝑖𝜔
𝛽𝑖+𝜆1(𝑥𝑖 𝑐𝑜𝑠( 𝐿𝜔) − 𝑦𝑖 𝑠𝑖𝑛( 𝐿𝜔))𝑛

𝑖=0 ,     (20) 

𝑄1𝑟(𝜔) = ∑ 𝑏𝑖𝜔𝛽𝑖(𝑧𝑖 𝑐𝑜𝑠( 𝐿𝜔) − 𝑡𝑖 𝑠𝑖𝑛( 𝐿𝜔)),𝑛
𝑖=0     (21) 

𝑄2𝑟(𝑗𝜔) = 𝜔𝜆2 𝑐𝑜𝑠(𝜆2
𝜋

2
)             (22) 

𝑄0𝑗(𝜔) = ∑ 𝑏𝑖𝜔
𝛽𝑖+𝜆1(𝑦𝑖 𝑐𝑜𝑠( 𝐿𝜔) + 𝑥𝑖 𝑠𝑖𝑛( 𝐿𝜔))𝑛

𝑖=0   (23) 

𝑄1𝑗(𝜔) = ∑ 𝑏𝑖𝜔
𝛽𝑖(𝑡𝑖 𝑐𝑜𝑠( 𝐿𝜔) + 𝑧𝑖 𝑠𝑖𝑛( 𝐿𝜔)),𝑛

𝑖=0     (24) 

𝑄2𝑗(𝑗𝜔) =  𝜔𝜆2 𝑠𝑖𝑛( 𝜆2
𝜋

2
).                                          (25) 

Solving the system (18) and (19), 𝛼2 and 𝛼3 are obtained 

in terms of 𝛼1 as  

𝛼2 = −
𝑄0𝑗(𝜔)+𝛼1𝑄1𝑗(𝜔)

𝑄2𝑗(𝜔)
                                     (26) 

𝛼3 = −(𝑄0𝑟(𝜔) + 𝛼1𝑄1𝑟(𝜔) + 𝛼2𝑄2𝑟(𝜔))                       (27)                      

for a fixed value of 𝛼1, equations (26) and (27) together 

with equation (7) partition the complex plane into root-

invariant regions, among which the stability region, if 

any, can be determined. 

IV. ILLUSTRATIVE EXAMPLES 

In this section, two illustrative examples are given to 

show the application of the procedure described in the 

previous section. 
 

Example 1: Stabilizing fractional first order controllers 

are determined for the fractional order time delay system 

studied in [15], having the following transfer function 

𝐺(𝑠) =
𝑒−0.5𝑠

𝑠1.5 .                             (28) 

Using (6) the fractional order characteristic equation 

of the control system is given by   

𝛥(𝑠) = (𝑠1.5+𝜆1 + 𝛼1𝑠1.5)𝑒0.5𝑠 + (𝛼2𝑠𝜆2 + 𝛼3),              (29) 

       = 𝑄0(𝑠) + 𝛼1𝑄1(𝑠) + 𝛼2𝑄2(𝑠) + 𝛼3,                       (30) 

with 

𝑄0(𝑠) = 𝑠1.5+𝜆1𝑒0.5𝑠,                                                           (31) 

𝑄1(𝑠) = 𝑠1.5𝑒0.5𝑠,                                                                (32) 

𝑄2(𝑠) = 𝑠𝜆2 .                                                                         (33)  

Fixing 𝛼1 and using (26) and (27) to determine 𝛼2 and 

𝛼3, we obtain 

𝛼2 = −
1

𝜔𝜆2 sin(𝜆2
𝜋

2
)

[𝜔1.5+𝜆1 (𝑐𝑜𝑠( (1.5 + 𝜆1)
𝜋

2
) 𝑠𝑖𝑛( 0.5𝜔) +

𝑠𝑖𝑛( (1.5 + 𝜆1)
𝜋

2
) 𝑐𝑜𝑠( 0.5𝜔)) + 𝛼1𝜔1.5 (𝑐𝑜𝑠( 3𝜋/4)) 𝑠𝑖𝑛( 0.5𝜔) +

 𝑠𝑖𝑛( 3𝜋/4)) 𝑐𝑜𝑠( 0.5𝜔))],                                                             (34)                                  

𝛼3 = 𝜔1.5+𝜆1 [𝑠𝑖𝑛( (1.5 + 𝜆1)
𝜋

2
) 𝑐𝑜𝑠( 0.5𝜔) − 𝑐𝑜𝑠( (1.5 +

𝜆1)
𝜋

2
) 𝑐𝑜𝑠( 0.5𝜔)] + 𝛼1𝜔1.5 [(𝑠𝑖𝑛( 3𝜋/4)) 𝑠𝑖𝑛( 0.5𝜔) −

 𝑐𝑜𝑠( 3𝜋/4)) 𝑐𝑜𝑠( 0.5𝜔))] −  𝛼2𝜔𝜆2 𝑐𝑜𝑠( 𝜆2
𝜋

2
).                            (35)   

 
Fig. 2 Stability region in (𝛼2, 𝛼3) plane with  𝛼1 = 1, 𝜆1 =

1 and 𝜆2 = 1 
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Using (7), the real root boundary is a straight line 

given by 𝛼3 = 0. First, let us fix the value of  𝛼1 = 1 

and choose 𝜆1 = 1  and  𝜆2 = 1, this corresponds to the 

case of a non-fractional first order controller. Equations 

(26) and (27) are used to get the complex root boundary 

curve as shown in Fig. 2. The shaded region represents 

the stability region in the (𝛼2, 𝛼3) plane. Repeating the 

same steps above with 𝜆1 = 0.5  and  𝜆2 = 0.5, a larger 

stability region is obtained as shown in Fig. 3. This 

clearly shows the advantage of using a fractional order 

controller in terms of robustness and non-fragility. 

 
Fig. 3 Stability region in (𝛼2, 𝛼3)plane with  𝛼1 = 1, 𝜆1 =

0.5 and 𝜆2 = 0.5 

In Fig. 4 the stability regions are obtained as a 3D plot 

by choosing 𝛼1 = 1, 𝜆1 = 0.5  and varying  𝜆2  between 

0 and 2. It is noticed that as 𝜆2 approaches zero, the 

stability region becomes larger. Fig. 5 shows the stability 

regions when 𝛼1 = 1, 𝜆2 = 0.5  and 𝜆1 ∈ (0,2). 

 
Fig. 4 Stability regions with  𝛼1 = 1, 𝜆1 = 0.5  

and 𝜆2 ∈ (0,2) 

 

 
Fig. 5 Stability regions with  𝛼1 = 1, 𝜆2 = 0.5 

 and 𝜆1 ∈ (0,2) 

 

 

Example 2: In this example, we consider stabilizing the 

fractional order delay system given by 

𝐺(𝑠) =
𝑒−0.2𝑠

𝑠1.2+3 𝑠0.7                      (36) 

by fractional first order controllers. In order to see the 

effect of the fractional order 𝜆2 on the stability regions, 

the following parameters were chosen: 𝛼1 = 0 and 𝜆1 =
1. Fig. 6 shows the stability regions in the (𝛼2, 𝛼3) plane 

for different values of  𝜆2.  

 
Fig. 6 Stability regions with  𝛼1 = 0 𝑎𝑛𝑑  𝜆1 = 1 

 

V. CONCLUSION 

 

 In this article, a stabilization method is proposed to 

obtain stabilizing fractional first order controllers 

applied to a fractional order time delay system. The 

given approach is based on using the D-decomposition 

method to determine the stability domain boundaries via 

the real root boundary and complex root boundaries. The 
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method can be used to design controllers with   specified 

gain and phase margins. It is well known that stability is 

an essential step in any controller design, hence the 

proposed approach is useful as a first step towards 

designing optimal fractional controllers for fractional 

order time delay systems. This line of research will be 

investigated in future work. 
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